# Number Gossip

(Enter a number and I'll tell you everything you wanted to know about it but were afraid to ask.)

## Common Properties of 8256

The number n is *abundant* if the sum of all its positive divisors except itself is more than n.

They are abundant above perfection, not to mention deficiency. See perfect and deficient numbers.

A positive integer greater than 1 that is not prime is called *composite*.

Composite numbers are opposite to prime numbers.

A number is *even* if it is divisible by 2.

Numbers that are not even are odd. Compare with another pair -- evil and odious numbers.

The number n is *evil* if it has an even number of 1's in its binary expansion.

Guess what odious numbers are.

One can take the sum of the squares of the digits of a number. Those numbers are *happy* for which iterating this operation eventually leads to 1.

The number n is *practical* if all numbers strictly less than n are sums of distinct divisors of n.

If you start with n points on a line, then draw n-1 points above and between, then n-2 above and between them, and so on, you will get a triangle of points. The number of points in this triangle is a *triangle* number.

Compare to square, pentagonal and tetrahedral numbers.